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Abstract

We analyze bargaining over the one-dimension characteristic of a public good among n impatient play-
ers when decisions require q favorable votes, q �2. Stationary subgame perfect equilibrium strategies are
characterized for all games with deterministic protocol. We provide a monotonicity condition (satisfied by
all single-peak, strictly quasi-concave and concave utilities) that assures uniqueness for every q whenever
player’s utilities are symmetric around the peak. Without symmetry, the monotonicity condition assures
uniqueness for qualified majorities, q > n/2, provided that agents are sufficiently patient and utilities satisfy
an additional regularity condition. Asymptotic uniqueness is assured for qualified majorities by imposing
only the monotonicity condition.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

This paper examines non-cooperative bargaining games in a classical environment of social
choice: A group of individuals must collectively choose a public good in a one-dimensional
interval of alternatives, over which individuals have single-peaked preferences. Examples are the
location of a public facility, the adoption of a public policy, or the allocation of a budget among
two public services.
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It is well known 1 that in these scenarios simple majority voting has very appealing properties:
It selects a Condorcet winner (the peak of a median voter), an outcome that is immune to strategic
manipulation and lies in the core of the underlying cooperative game.

Still, simple majority is sometimes indecisive 2 and, more importantly, collective decisions of-
ten require levels of consensus other than a simple majority. For these situations, predictions must
rely on detailed examination of the bargaining processes by which alternatives gather decisive
support. In this paper we are concerned with such environments. We ask three main questions:
What are collective decisions like when consensus over an alternative is bargained over time? Un-
der what conditions is it possible to give a sharp prediction for the collective decision? How would
this prediction depend on the intensity of the consensus required? To address these questions, we
analyze games taking place over discrete time where a collective decision must be reached by a
deterministic protocol of alternating proposals and voting, under the assumption that agents are
impatient. We consider voting procedures that require the approval of a quota of players ranging
from minimal consensus to unanimity.

Our main message is that, for a wide range of utilities, the assumption that agents discount fu-
ture utilities exponentially has the usual drastic effect in selecting a unique stationary equilibrium
outcome. We show that, in spite of the public nature of the collective decision and the tight con-
straint of one-dimensionality, the bargaining problem is not radically different from negotiations
to split a private surplus. While any core allocation can be sustained as a stationary equilibrium
among perfectly patient players, impatience plays a powerful role in selecting a single alternative.
When the utilities are symmetric around the peak and satisfy a natural condition of monotonic-
ity (satisfied by all continuous, strictly quasi-concave, and concave utilities) a unique stationary
equilibrium is assured for every quota, q = 2 to n, and for all discount factors. Without symmetry,
the monotonicity condition assures the selection of a unique outcome only when collective deci-
sions demand a (super)majority and agents are rather patient. We establish that, for all q > n/2,
monotonicity and an additional regularity condition assure a unique equilibrium provided that
the agents are sufficiently patient. When the regularity condition is not imposed, monotonicity
assures asymptotic uniqueness: as players become arbitrarily patient, all equilibrium outcomes
converge to a unique limit (independently of the order of play).

The arguments underlying our results are distinct from those that apply in multilateral negoti-
ations to share a pie under the unanimity rule. In a standard pie-sharing bargaining game where
three or more players must reach a unanimous agreement to split a private surplus, impatience
(combined with stationarity) has a dramatic effect and shrinks the set of equilibrium outcomes
to a unique division of the surplus because: (a) to get acceptance the proposer must offer to each
opponent a share that is worth exactly their present value of rejecting, and (b) since all shares
must add up to one, each player’s value of rejecting (assumed stationary) is determined by the
shares that she must offer to receive approval when she is the proposer. The constraints implied by
(a) and (b) are tight and determine equilibrium shares uniquely. 3 This argument does not work
in our set up because proposals cannot be customized to each voter: when the support of more
than two players is needed, equilibrium proposals will easily deliver payoffs above continuation
values to some responders.

1 See Moulin [9,10].
2 With an even number of voters, the (weak) Condorcet winner is not unique.
3 Under qualified majority rules, things are more complicated because only the least demanding players need to be

offered their expected continuation payoffs (see [4]).
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Our focus also departs from arguments based on the link between the core and the set of sta-
tionary subgame perfect equilibria. When the players are perfectly patient, any allocation in the
core can be sustained as a stationary subgame perfect equilibrium outcome (see [12]). With an odd
number of agents the core of a simple majority game contains a single alternative, the peak of the
median voter. Consequently, under perfect patience, the unique stationary subgame perfect equi-
librium outcome of bargaining games where decisions are taken by simple majority is the peak
of the median voter. Since the stationary subgame perfect equilibrium correspondence is upper-
hemicontinuous, games where players are sufficiently patient have a unique stationary subgame
perfect equilibrium as well, with outcomes that remain close to the peak of the median voter. 4

However, when a collective decision requires more than a simple majority, the underlying coop-
erative game has a large core and arguments based on core equivalence and upper-hemicontinuity
do not help to attain uniqueness.

This paper is closely related to Banks and Duggan [1] and Cho and Duggan [3]. The social
choices that we discuss are a particular case of the more general problem addressed by Banks and
Duggan [1]. They consider a model of sequential bargaining where proposals, social alternatives,
lie in arbitrary convex subsets of a multidimensional Euclidean space. Proposers are selected at
random and agreement is reached by an arbitrary voting rule. They prove existence of equilibria
under very general conditions, and they establish sufficient conditions for core equivalence. 5

Their results, however, do not provide an explicit characterization of equilibria nor a discussion
of conditions for uniqueness. The issue of uniqueness for one-dimensional problems is addressed
in Cho and Duggan [3]. They show that under quadratic utilities, a game with random proposers
and strong and proper decisive coalitions has a unique stationary subgame perfect equilibrium. 6

Their result is based on the existence of a unique core player, a property that fails at quotas
other than the simple majority. Our contribution is complementary; we establish (asymptotic)
uniqueness for a wide range of preferences and consensus requirements, but our results apply
only to deterministic protocols. The issue of uniqueness for qualified majorities under random
proposers remains open.

Jackson and Moselle [6] is also related. They consider alternatives that have two components,
the location of a public good in an interval and the division of a private good among the agents.
Their concern is the nature of coalitions that may form when decisions are taken with a procedure
of alternating proposals and simple majority.

More indirectly, our work is also related to the literature that explores the (possible) equiv-
alence between the equilibria of non-cooperative games and the core of underlying games in
coalitional form (see [14,12,8,5]). The equivalence results of all these models rely fundamen-
tally on the assumption that players are perfectly patient; and might have the additional draw-
back of little content when the core is either empty or a large set. Chatterjee et al. [2] and
Hart and Mas-Colell [7] present models where relaxing the assumption of perfect patience is
instrumental in attaining sharper predictions within a large core. 7 Neither of these two models,

4 See Jackson and Moselle [6].
5 For set-ups like ours, where alternatives are in an interval, they show that equilibria (in pure strategies) exist; and that

they are equivalent to core outcomes for perfectly patient players.
6 When decisive coalitions are determined by a quota, only the simple majority is strong and proper.
7 In Chatterjee et al. [2] any efficient stationary subgame perfect equilibrium converges (as the impatience diminishes)

to the egalitarian allocation. In Hart and Mas-Colell [7] the stationary equilibrium outcomes converge to a “Mashler–Owen
consistent value payoff configuration” (which is unique and lie in the core for specific formulations of the characteristic
function).
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however, admits a formulation where the collective choice is the characteristic of a public good
on an interval. 8

In the next section, the general bargaining model is presented. In Section 3 we characterize
stationary subgame perfect equilibria and establish conditions assuring existence. Conditions for
uniqueness of the equilibrium are explored in Section 4. The proofs omitted in the main text are
in the Appendix.

2. The model

A set of agents I = {1, 2, . . . , n} must collectively choose an alternative x in the interval
[0, 1]. The instantaneous preferences of each i ∈ I are described by a continuous and strictly
quasi-concave utility function, ui : [0, 1] → �+. Note that strict quasi-concavity and continuity
imply single-peakedness and strict monotonicity; that is, there is a unique pi ∈ [0, 1] such
that pi ∈ arg max {ui(x) : x ∈ [0, 1]}, ui(x) < ui(y) for x < y�pi , and ui(x) > ui(y) for
pi �x < y. The permutation of the peaks profile (p1, . . . , pn) in increasing order is denoted by
(p1, . . . , pn) with pk denoting its kth term. To avoid trivial scenarios we assume that at least two
players have different peaks, and we set p1 = 0 and pn = 1 without loss of generality.

Some interpretations of this social choice problem are the following:

1. Choosing a policy or appointing a public official when the ideological contest concerns a
single issue.

2. Selecting the location of a public facility between two cities connected only by one road.
3. Deciding on the level of production of a public good subject to non-decreasing marginal

costs, under equal sharing of the costs. Strictly convex preferences over public good and
wealth combinations are represented by a single-peaked utilities over the public good space.

4. Allocating a fixed budget to finance the production of two public goods. If the preferences of
the players are quasi-concave and increasing with respect to both goods, the two-dimension
problem can be reduced to the present one-dimensional decision problem.

Decisions are bargained over discrete time t = 0, 1, . . . , with an infinite horizon. The timing of
the game is as follows. At t = 0 player 1 selects a proposal x ∈ [0, 1] and sequentially the rest of
players either accept or reject it. If x is accepted by at least q−1 responders, 2�q �n, the collective
decision x is implemented and the game ends. Otherwise, the game moves to period t = 1 where
2 becomes the proposer. And so on. The process continues until a proposal is supported by at least
q players (one of them the proposer). The utility of perpetual disagreement—where agents forego
consumption of the public good—is normalized to zero so that players unanimously (weakly)
prefer any agreement to perpetual disagreement. Upon termination of the game at t with decision
x the payoff of a player i is given by �t ui (x) where � ∈ (0, 1) denotes the common 9 discount
factor.

Remark. For n = 2, although the set of feasible agreements is not necessarily convex in the
utility space, the preceding model is strategically equivalent to the standard bargaining game of
Rubinstein [13]. Things change for n�3 because the standard requirements over utility sets easily

8 In our set up utilities are not transferable, and coalitional payoffs usually do not satisfy superadditivity, convexity or
comprehensiveness. Chatterjee et al. [2] assume that the underlying game in coalitional form has transferable utility and is
superadditive. In Hart and Mas-Colell [7] coalitions can attain payoffs that lie in sets that are convex and comprehensive.

9 This is for convenience, the results go through with player-specific discount factors.
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Fig. 1. Feasible utilities set for u1 (x) = 1 − |x − 1/2|, u2 (x) = 1 − x and u3 (x) = x.

break down. Consider, for instance, the example displayed in Fig. 1 where the utility set is neither
convex nor comprehensive.

Histories, strategies and subgame perfect equilibria are defined in the standard way. We focus
our attention to stationary subgame perfect equilibria (henceforth SSPE). At any SSPE agents
play history independent strategies that constitute a subgame perfect equilibrium. Thus, whenever
they act as proposers, agents select the same alternative; and they always use the same decision
rule to accept/reject the proposals of a given opponent.

3. Characterization and existence

In what follows, we fix � ∈ (0, 1) and a profile of utility functions (u1, . . . , un) and characterize
SSPE for the full range of quotas q = 2 to n. The stationary nature of strategies crucially simplifies
the characterization. First, the actions of all players depend only on the current state (who is the
proposer, what is the proposal), so that expected payoffs at any subgame of a given equilibrium are
fixed and independent of the history of play. Second, disagreement cannot prevail in equilibrium
because it offers the least payoff to every player. Furthermore, for any strategy profile leading to
an agreement with some delay, there is a profitable deviation that anticipates agreement. Therefore
the following holds:

Lemma 1 (Immediate agreement). In any SSPE agreement is immediate.

An SSPE is characterized by a vector of proposals and acceptance rules, one for each player,
that are mutually best responses. Consider a proposer i that anticipates an immediate decision
on alternative x ∈ [0, 1] if the negotiation enters into the next period. What alternative must
she propose to attain the best possible agreement in the current period? She must propose an
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alternative y that is acceptable, uj (y)��uj (x), for at least q − 1 opponents j in I. To assess
what alternatives can receive consensus to defeat the prospect of agreement at x tomorrow (and
to compute which one is best) we must, first, account for the fact that utilities increase up to the
peak and then decrease; and second, we need to keep track of what responders find each proposal
acceptable. Although there is no fundamental obstacle, that requires the bit of notation that we
introduce next.

For each utility function u with peak at p, we define its associate left and right functions as
l : [0, p] → � and r : [p, 1] → �, where l (x) = u (x), r (x) = u (x) (the notation li and ri will
be used if necessary). The trade-offs between alternatives and delay for player i are now easily
evaluated: an immediate agreement at an alternative y dominates the prospect of agreement at x
with one period of delay provided that ui(y)��ui (x); that is, if and only if y ∈ [�i (x) , �i (x)],
where

�i (x) =
{

l−1
i (�ui (x)) if �ui (x) ∈ [ui(0), ui(pi)] ,

0 otherwise;

�i (x) =
{

r−1
i (�ui (x)) if �ui (x) ∈ [ui(1), ui(pi)] ,

1 otherwise.

When the approval of only m players in a set P ⊆ I is needed for the success of a proposal, not
all acceptance thresholds �i (x) and �i (x) are relevant. To keep track of which ones are we use

the following notation: rank the elements of
{
�j (x) : j ∈ P

}
and

{
�j (x) : j ∈ P

}
in increasing

and decreasing order, respectively, and denote by �P,m (x) and �P,m(x) the mth terms in these
rankings. Thus, when the approval of m players i in P is necessary, proposal z beats the prospect
of decision x in the next period if and only if z ∈ [�P,m (x), �P,m(x)].

Henceforth, whenever no confusion arises, we will write � (x) ≡ �I,q (x) and �(x) ≡ �I,q(x).
We are now ready to provide a rather simple characterization of the best responses.

Lemma 2 (Best responses). Consider the game under quota q. For each x ∈ [0, 1] the best
response of proposer i at t when an immediate agreement x prevails at t + 1 is to propose �i (x),
where �i : [0, 1] → � is defined as

�i (x) =

⎧⎪⎨⎪⎩
�I,q(x) if pi > �I,q(x),

�I,q (x) if pi < �I,q (x) ,

pi otherwise.

(1)

Proof. A proposal y by player i is acceptable upon the prospect of agreement at x with one period
of delay provided that y ∈ Aj (x) = [�j (x) , �j (x)] for at least q − 1 responders j �= i; that is,

y ∈ Ai,q(x) = [
�I\{i},q−1 (x) , �I\{i},q−1(x)

]
. Since the Aj (x) are connected and contain x for

all j ∈ I , it is immediate that Ai (x) ∩ Ai,q(x) �= ∅. Hence, for any proposer i ∈ I , there exists
proposals that are acceptable at least to q − 1 responders and that i herself prefers over delay.

The best proposal of player i in Ai (x) ∩ Ai,q(x) must maximize ui in Ai,q(x). Furthermore,
maximizing ui in Ai,q(x) is equivalent to maximizing ui in Aq(x) = [

�I,q (x) , �I,q(x)
] ⊆

Ai,q(x). To check this claim assume that the best alternative in Ai,q(x), say y, is not the best
alternative in Aq(x); i.e. y ∈ [�I\{i},q−1 (x) , �I,q (x)) ∪ (�I,q (x) , �I\{i},q−1 (x)] �= ∅. If y ∈
[�I\{i},q−1 (x) , �I,q (x)) �= ∅ then pi �y < �I,q (x) since otherwise a proposal y′ > y would be
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preferred by i and accepted by at least q − 1 players. Moreover, since �i (x) �pi we must con-
clude that y > max

{
�I\{i},q−1 (x) , �i (x)

}
��I,q (x), which is a contradiction. The symmetric

argument rules out y ∈ (�I,q (x) , �I\{i},q−1 (x)] �= ∅. Hence, for all i, the optimal proposal
when agreement on x prevails next period in case of rejection is to propose an y maximiz-
ing ui in Aq(x) = [

�I,q (x) , �I,q(x)
] = [

� (x) , �(x)
]
. If pi lies in this interval then that is

the best response proposal of player i; otherwise she must propose � (x) or �(x), whatever is
closer to pi . �

We may now give a characterization of SSPE outcomes and establish that they exist.

Proposition 3 (Characterization and existence). Consider a game under quota q. The following
statements hold:

(i) An alternative x is an SSPE outcome if and only if

x = �1
(
�2

(
. . . �n−1

(
�n (x)

)))
,

where, for all i ∈ I , �i (x) is defined by Eq. (1).
(ii) An equilibrium exists.

Proof. First observe that restricting attention to pure strategies is without loss of generality (see
the Appendix for a detailed proof of this claim).

Consider an SSPE that yields an immediate decision x. By stationarity, this outcome prevails
any time t that player 1 proposes. Therefore, at period t − 1 her predecessor in the protocol, n,
must propose �n (x). Taking into account that at a stationary strategy player 1 proposes the same
alternative x whenever she intervenes as the proposer, (i) follows by recursive use of Eq. (1).

It is immediate that the �i (.) are continuous so that

w (x) = �1
(
�2

(
. . . �n−1

(
�n (x)

)))
is also a continuous. Moreover, by construction 0�w (0) �1 and 0�w (1) �1. Hence, the ex-
istence of a x ∈ [0, 1] satisfying x = w (x) follows by Brouwer’s fixed point theorem and the
proof of (ii) is complete. �

The existence of an SSPE is not a surprise (in fact, the existence result of Banks and Duggan
[1], for the case of random proposers, is substantially more general); however, the present explicit
characterization provides the tools to explore conditions for uniqueness.

4. Uniqueness

We now build on Proposition 3 to address conditions assuring uniqueness of the SSPE.
At this point it is useful to recall the classical argument for uniqueness of the equilibrium due to

Rubinstein [13]: when two agents bargain to split a private surplus, a player expecting a large share
is more ready to give up some gains to anticipate agreement than a player expecting a small share.
Because equilibrium proposals must balance this trade-off for both players, and because what one
agent gains the other must lose, uniqueness is assured provided that the surplus-delay trade off is
strictly monotonic. In the present environment, the gain of an agent does not necessarily assure
a loss to all her counterparts. However, given the decision that prevails in the continuation, the
proposer needs only to satisfy the pivotal responder; leaving her indifferent assures that q−2 other
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responders will strictly prefer to approve, and all the other players are irrelevant. Our main point
is that when decisions are one-dimensional, negotiations are “essentially” two-player bargaining
problems between the proposer and the pivotal responder. Therefore the condition for uniqueness
is “essentially” the increasing loss of delay condition, which assures uniqueness for two-player
problems. 10 We propose it next.

Definition. Monotone compensation for delay (MCD): We say that ui satisfies monotone com-
pensation for delay if the functions x − �i (x) and x − �i (x) are increasing.

Remark. Single-peakedness assures that x−�i (x) is increasing for all x > pi , and that x−�i (x)

is increasing for all x < pi . Thus, a single-peaked ui satisfies MCD if: (i) the measure of the left
acceptance set

[
�i (x) , x

]
is increasing for x < pi ; and (ii) the measure of the right acceptance

set [x, �i (x)] is decreasing for x > pi . In other words, for x < pi (resp. x > pi) the range of
acceptable proposals to the left (right) of x shrinks as x moves away from the peak.

A natural domain of preferences where MCD holds is that of continuous, quasi-concave and
concave utilities.

Lemma 4 (Concavity implies MCD).
(i) A utility function ui that is continuous, strictly quasi-concave and concave satisfies MCD.
(ii) A continuous, strictly quasi-concave utility function satisfying MCD may fail to be concave.

See the Appendix for the proof of the first claim. The following example proves the second.

Example 5 (Non-concave MCD utilities). Consider

ui : [0, 1] → �+

ui(x) =

⎧⎪⎨⎪⎩
xk if x�pi,

pk
i

(1 − pi)
k

(1 − x)k if x > pi,

for k > 1.

This function is continuous, quasi-concave, satisfies MCD, and it is not concave. Consider
x�pi �y. Single-peakedness implies that x − �i (x) and y − �i (y) are increasing functions.
Moreover, it is easy to check that �i (x) = x�1/k and �i (y) = 1−(1−y)�1/k . Hence x−�i (x) =(

1 − �1/k
)

x, y − �i (y) = (1 − y)(�1/k − 1) and both are strictly increasing for all � ∈ (0, 1).

Our next example shows that without MCD uniqueness fails even for two players.

Example 6 (Multiple SSPE when MCD fails). Let I = {1, 2} with utilities

u1 (x) = e1−x,

u2 (x) = ex.

10 See Osborne and Rubinstein [11, p.35]. The main difficulty that remains is that the identity of the relevant “responder”,
the pivotal voter, depends on the expected continuation outcome.
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It is immediate to check that MCD fails, and that all pairs (x, x − ln �) , x ∈ [
0, 1 + ln �

]
are a

profile of SSPE proposals.

4.1. Symmetric utilities

A straightforward condition that (with MCD) is sufficient for the uniqueness of the SSPE is
symmetry. We will argue that when the agents utilities are symmetric around the peak and satisfy
MCD the best response correspondences of all players are contractions. As an SSPE outcome is
a fix point of the contraction obtained by a composition of contractions, it must be unique. This
holds for every quota q.

Proposition 7 (Symmetry and MCD imply uniqueness for any quota). Assume that ∀i ∈ I util-
ities are symmetric, ui(x) = fi(|pi − x|), and satisfy MCD. Then the SSPE is unique for all
q �2.

Proof. The proof builds in Lemmata 14–16, which are stated and proved in the Appendix. First,
Lemma 14 establishes that MCD and symmetry imply that �i and �i are contractions. Second,
Lemma 15 establishes that, for every q, when all �i and all �i are contractions for all i ∈ I then
� and � are contractions. Third, Lemma 16 establishes that if � and � are contractions then the
best response, �i (.), is a contraction for every i ∈ I . By Lemmata 14, 15 and 16, and Proposition
3 the equilibrium function w (x) = �1

(
�2

(
. . . �n−1

(
�n (x)

)))
, being the composition of con-

tractions, is a contraction as well. Consequently, w (x) = x has a unique solution and the result
follows. �

4.2. Qualified majorities and patient players

Although it is far from being a necessary condition for uniqueness of the SSPE,
symmetry cannot be dispensed with in our proof of Proposition 7. Nonetheless, replacing
symmetry by a regularity condition on the utilities, we can establish that MCD assures
uniqueness when the consensus required is a qualified majority and the agents are suffi-
ciently patient. Our argument crucially relies on the implications of the following obser-
vations.

Lemma 8. For q > n/2 and MCD utilities, if 0�x < y�1, then x − �i (x) < y − �i (y) for all
i ∈ I .

Lemma 9. It is impossible to sustain two different SSPE where the proposals are (x1, . . . , xn)

and (y1, . . . , yn) such that xi+1 − xi < yi+1 − yi for all i ∈ I .

Lemma 8 is proved in the Appendix. To see that Lemma 9 holds it suffices to observe that if
xi+1 − xi < yi+1 − yi for all i ∈ I , then

n−1∑
i=1

(xi+1 − xi) + (x1 − xn) <

n−1∑
i=1

(yi+1 − yi) + (y1 − yn),

which yields a contradiction.
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Consider now two potential SSPE outcomes x < y. By Lemma 8, x − �i (x) < y − �i (y) for
all i ∈ I . Hence, by Lemma 9, sustaining x and y as SSPE outcomes, requires that the inequality
x = x1<y1 = y is reversed at the proposals of some player j>1, so that yj>qxj . Then, to attain
(two) fixed points, another reversal, yj ′ < xj ′ , is needed for some j ′ > j (in fact an even number
of reversals must occur). To establish the uniqueness of SSPE for qualified majorities we will
argue that, under MCD and the appropriate regularity condition, either reversals are impossible
or they have measures that are incompatible with the existence of more than one SSPE.

When players are sufficiently patient, reversals may occur only when the continuation outcome
lies within a small interval of their peak. Thus, the regularity condition that we impose applies
to players whose peaks are interior and relevant given q. For these players, we will require that,
under sufficient patience, when a player expects that an alternative close to her peak prevails in
the continuation, unless her best response is always her peak, she is never the sole determinant of
the acceptance set. To give a formal statement of the requirement, the following notation is used
for the relevant subsets of I: I q = {

i ∈ I |0 < pn−q+1 �pi �pq < 1
}
, Li = {

j ∈ I, |pj < pi

}
,

and Ri = {
j ∈ I, |pj > pi

}
.

Definition. ε-Regularity (REG): Fix q > n/2 and ε > 0. We say that the utility profile
(u1, . . . , un) is ε-regular at q if there exists �ε such that, for any � > �ε and all i ∈ I q , either:
(a) (pi − ε) − �i (pi − ε) > (pi + ε) − �h (pi + ε) for all h ∈ Ri , and �i (pi + ε) − (pi + ε) >

�j (pi − ε) − (pi − ε) for all j ∈ Li; or (b) � (pi + ε) �pi �� (pi − ε).

The set of players i ∈ I q , for whom condition (a) holds is specially relevant in the sequel;
we denote it as I q . Under MCD, (a) implies that, for all z ∈ [pi − ε, pi + ε], z − �h (z) <

(pi + ε) − �h (pi + ε) < (pi − ε) − �i (pi − ε) �z − �i (z) for all h ∈ Ri , and �j (z) − z >

�i (z) − z, for all j ∈ Li . Consequently, for all i ∈ I q , the following observation applies:

R1. For all z ∈ [pi − ε, pi + ε] and ���ε,

1. �h (z) > �i (z) for all h ∈ Ri , and
2. �j (z) < �i (z) for all j ∈ Li .

In fact, ε-regularity and MCD have much stronger implications. When players are sufficiently
patient, for a set of continuations z that remain sufficiently close to pi , both acceptance bounds
of player i remain below those of player h ∈ Ri and above those of players j ∈ Li . This is our
next result, which is proved in the Appendix.

Lemma 10. Assume a profile of MCD and ε-regular utilities. If i ∈ I q then there exist ε, � ∈
(0, 1) such that the following property holds:

R2. For all z ∈ [pi − ε, pi + ε] and ���,

1. �j (z) < �i (z) < �h (z) for all h ∈ Ri , j ∈ Li , and
2. �h (z) > �i (z) > �j (z) for all j ∈ Li , h ∈ Ri .

R2 is very useful to determine what players are relevant for the acceptance set
[
� (z) , � (z)

]
when z lies in the neighborhood of a given interior peak pi, 0 < pi < 1. For pi ∈ (

pn−q+1, pq
)
,

it assures that i is irrelevant; for pi = pq or pi = pn−q+1, it implies that � = �i or � = �i ,
respectively.

We are now ready to establish that sufficient patience assures uniqueness for all q > n/2.
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Proposition 11 (Uniqueness for qualified majorities and patient players). Fix q > n/2 and a
profile of MCD utilities where pi �= pj∀i, j ∈ I . If (u1, . . . , un) is ε̂-regular for some ε̂ > 0,
then there exists �̂ ∈ (0, 1) such that, for �� �̂, the SSPE is unique.

The detailed proof is in the Appendix. The outline of the argument is as follows. First, we
observe that when agents are sufficiently patient, if two different alternatives are SSPE outcomes,
then they must be close to the peak of some player i such that pn−q+1 �pi �pq . In the second
and third step we assume that 0 < pi < 1, and using the implications of ε̂-regularity and MCD
we derive a contradiction: the second step establishes that pi /∈ (pn−q+1, pq); and the third step
rules out that pi = pn−q+1 or pq . The fourth step takes care of the case pi = 0 or 1, (which is
relevant only when q = n) and completes the proof. The assumption that all peaks are different
is for convenience and can be relaxed.

The following are examples of environments where the conditions of Proposition 11 are met:

1. MCD utilities, and unanimity. Under unanimity I q = ∅, so ε-regularity is trivially satisfied
for all � and all ε.

2. MCD utilities, n odd, and simple majority. The simple majority requirement trivially assures
that the regularity condition is met: q = n+1

2 implies that I q = {
i|pi = pn−q+1 = pq

}
,

and for all z ∈ [0, 1], � (z) �pi �� (z) for all �.
3. Differentiable MCD utilities and any qualified majority. The differentiability of utilities

implies the regularity condition. By differentiability and single peakedness u′
i (pi) = 0,

u′
h(pi) > 0 for h ∈ Ri , and u′

j (pi) < 0 for j ∈ Li . It is easy to check that for pi ∈ (0, 1)

and � sufficiently close to 1, if h ∈ Ri , then pi −�i (pi) > pi −�h(pi). 11 By continuity, for
ε sufficiently small, (pi − ε)−�i (pi − ε) > (pi + ε)−�h (pi + ε). Similarly, for j ∈ Li ,
there are ε > 0 and � < 1 such that �i (pi + ε) − (pi + ε) > �j (pi − ε) − (pi − ε).

4. MCD utilities that are identical except in the location of the peak, and any qualified
majority. In this case the regularity condition follows by the combination of MCD with
identical utilities. Given q > n/2 and an i ∈ I q there exists ε > 0 with ε < εr =
min {ph − pi : h ∈ Ri} such that ui (pi − ε) > uh (pi + ε) for all h ∈ Ri , since pi + ε <

ph − ε. MCD implies that (ph − ε) − �h (ph − ε) > (pi + ε) − �h (pi + ε) for all �.
Since utilities are identical (ph − ε) − �h (ph − ε) = (pi − ε) − �i (pi − ε) and there-
fore (pi + ε) − �h (pi + ε) < (pi − ε) − �i (pi − ε) for all h ∈ Ri . Similarly, there exists
ε < εl = min

{
pi − pj : j ∈ Li

}
such that �j (pi − ε)−(pi − ε) < �i (pi + ε)−(pi + ε)

for all players j ∈ Li . Thus ε-regularity holds provided that, for all i ∈ I q , ε is small enough
relative to the min{εr , εl}.

To complete our analysis we now turn attention to the asymptotic uniqueness of SSPE outcomes
as the impatience of players vanishes, i.e. � → 1.

4.3. Asymptotic uniqueness

Next we establish that for all qualified majorities, q > n/2, as players with MCD preferences
become arbitrarily patient, all SSPE outcomes approach to a unique alternative. Furthermore,

11 Note that u′
i (pi ) = 0 ⇒ ∀� > 0, ∃�� such that

ui(pi )−ui(�i (pi ))
pi−�i (pi )

= ui(pi )(1−�)
pi−�i (pi )

< �, ∀����. On the other hand

u′
h (z) > 0 ∀z�pi ⇒ ∃k > 0 such that

uh(pi)−uh(�h(pi))
pi−�h(pi)

= uh(pi)(1−�)
pi−�h(pi)

> k, ∀�. Hence, for � <
ui(pi)
uh(pi)

k, we have

pi − �i (pi ) > pi − �h (pi), ∀����.
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this convergence holds irrespective of the order by which players make proposals. Thus, for
environments with very patient players we can give a unique (limit) prediction that depends only
on the configuration of individual preferences and the qualified majority required. The intuition
behind this result is simple: given q and for � sufficiently high, only equilibrium proposals that are
very close to pn−q+1 or pq , say in

(
pn−q+1 − ε, pn−q+1 + ε

)∩[0, 1] or (pq − ε, pq + ε)∩[0, 1],
might induce reversals in the best responses (which, by Lemmata 8 and 9, are necessary to sustain
multiple SSPE). However, as patience increases these (disjoint) intervals shrink and

∣∣�i (x) − x
∣∣

becomes arbitrarily small for all i ∈ I ; thus, even if reversals in the best responses cannot be ruled
out, their impact is negligible.

Proposition 12 (Asymptotic uniqueness for qualified majorities). Let q > n/2 and assume that
preferences satisfy MCD. For all ε > 0 there is �ε ∈ (0, 1) such that if x1 and y1 are SSPE
outcomes for ���ε, then |x1 − y1| < ε.

Proof. Lemma 18 establishes that when players are sufficiently patient all the proposals xi in a
given SSPE must be nearby the initial proposal (and equilibrium outcome) x1.

We now combine Lemma 18 with MCD to establish that as � approaches 1 all SSPE outcomes
converge. Assume there is some ε > 0 such that for all � ∈ (0, 1) there are two SSPE outcomes
with proposal profiles x = (x1, . . . , xn) and y = (y1, . . . , yn) such that x1+ ε/2 < y1 − ε/2.
(Note that the protocol at which x and y are SSPE need not be the same, identifying the first
proposer as player 1 is just for convenience).

Given ε > 0, by Lemma 18 there is a �ε, such that, for ���ε, all xi ∈ (x1 − ε/2, x1 + ε/2) ∩
[0, 1] and all yi ∈ (y1 − ε/2, y1 + ε/2) ∩ [0, 1]. Since xk < yj for all xk and yj , by Lemma 8,
xk − �i (xk) < yj − �i

(
yj

)
for all i, j, k ∈ I . Therefore, using Lemma 9 we get a

contradiction. �

Since the argument carries if the (deterministic) protocols by which x and y are the SSPE
outcomes are different, the following corollary is immediate.

Corollary 13 (Asymptotic protocol independence for qualified majorities). Given a profile of
MCD utilities and a qualified majority q > n/2, all SSPE converge to the same outcome in-
dependently of the order of play.

Remark. The asymptotic independence of the protocol clearly fails in games where decisions
need only the approval of a minority. The intuition is simple: proposers always seek the support
of their neighbors. When only a small number of votes is necessary (q �n/2), there is no subset
of players whose vote is needed by every proposer; therefore equilibrium outcomes may change
drastically depending on the order by which players propose.

5. Conclusions

We have explored multilateral bargaining on a one-dimensional characteristic of a public good
when decisions require the favorable vote of at least q participants under a deterministic protocol of
alternating proposals. For the full range of quota requirements (ranging from minority consensus
to unanimity) we provided a characterization of SSPE, and we establish sufficient conditions
assuring uniqueness.



D. Cardona, C. Ponsatí / Journal of Economic Theory 137 (2007) 627–651 639

When decisions require a consensus weaker than unanimity, assuming that everyone gains
in every agreement is an important limitation of our analysis, since it excludes environments
where decisive coalitions may impose alternatives at which some players are worse off than in
perpetual disagreement. Unfortunately, addressing these scenarios poses difficulties that we could
not resolve, because neither existence nor uniqueness can be assured.

Our results provide a useful tool to address issues of coalition formation. Since the provision
of public goods is a main motivation fueling group formation and segregation, precise predictions
on bargaining within groups are fundamental to discuss the formation and stability of coalitions.
We plan to explore this in future research.
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Appendix

Notation. The following notational conventions are used:

1. x, y, z denote generic alternatives in [0, 1]. x, y, z, denote generic profiles of alternatives;
whenever we refer to x = (x1, . . . , xn) as an SSPE profile of proposals we write x to refer
to the corresponding equilibrium outcome.

2. Given utility function u with peak at p and alternative z ∈ [0, 1], and its associated left and
right functions r and l (defined in Section 3), we denote by �(z) and �(z) the following two
alternatives:

�(z) =
{

l−1 (u (z)) if u (z) ∈ [u (0) , u (p)] ,

0 otherwise,

and

�(z) =
{

r−1 (u (z)) if u (z) ∈ [u (p) , u (1)] ,

1 otherwise.

That is, �(z) (resp. �(z)) is the alternative to the left (right) of p that gives the feasible utility
closest to u (z); thus, for z�p, �(z) = z, and �(z) = z for z�p. Subindexed �i and �i will
be used if necessary.

Proof of Proposition 3.

Claim. There is no SSPE where the players use strictly mixed strategies.

Consider a profile of stationary strategies. Player i’s strategy specifies her proposal and her
acceptance/rejection rule to the opponent’s proposals. Strategies are history independent; thus
proposals are independent of past play and acceptance/rejection decisions depend only on the
standing proposal and, possibly, on who the proposer is.
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By stationarity, the continuation expected outcome x is independent on the actions of the
players in the current period. Given this expected outcome, the proposer can choose among a
set of outcomes which is a closed interval

[
� (x) , � (x)

] ⊆ [0, 1]. Moreover, the utilities of the
players are continuous an strictly quasi-concave so that there is a unique optimal proposal for any
interval

[
� (x) , � (x)

]
.

Let us now check that the strategy cannot be mixed in the stage of acceptance. This could be
only when some player is indifferent between continuation and the proposal. If some player rejects
the proposal with positive probability, then it will be in the interest of the proposer to increase the
utility of this player by changing marginally her proposal so that she accepts it. This is possible if
no other player gets a payoff equal or smaller than her continuation utility. However, this proposal
exists for any continuation payoff (since � ∈ (0, 1)). �

Proof of Lemma 4(i). We prove that if ui = u is continuous, strictly quasi-concave and concave
then x − �i (x) is increasing for all x ∈ [0, 1]. A symmetric argument proves that x − �i (x) is
increasing. (In what follows we drop subindex i except in �i and �i .)

Since u is continuous, strictly quasi-concave and concave, it has a unique maximum. Given,
x, x′ ∈ [0, 1], x < x′, we distinguish three cases depending on the position of x, x′ relative to
the peak p:

1. Let p�x < x′. In this case the desired inequality holds without appealing to concavity: Since
u (x) > u

(
x′) then �i (x) ��i

(
x′), and it is immediate that x − �i (x) < x′ − �i

(
x′).

2. Let x < x′ �p. In this case, (1−�)u (x) = u (x)−�u (x) < u
(
x′)−�u

(
x′) = (1−�)u

(
x′).

(a) Assume that �u (x) ∈ [u (0) , u (p)], which implies �u
(
x′) ∈ [u (0) , u (p)]. Observe

that �u (z) = u
(
l−1 (�u (z))

)
since, for any z ∈ [0, p], l (z) = u (z). Hence,

u (x) − u
(
l−1 (�u (x))

)
< u

(
x′) − u

(
l−1 (

�u
(
x′))) .

The concavity of u, implies that

u (x) − u (x − a) �u
(
x′) − u

(
x′ − b

)
for any a�b.

Rewrite l−1
(
�u

(
x′)) = x′−b and l−1 (�u (x)) = x−a, and use the previous inequalities

to conclude that a < b. Hence, x − �i (x) = x − l−1 (�u (x)) < x′ − l−1
(
�u

(
x′)) =

x′ − �i

(
x′).

(b) Assume �u (x) /∈ [u (0) , u (p)], so that �i (x) = 0, and �u
(
x′) ∈ [u (0) , u (pi)]. Con-

sider y ∈ [
x, x′] such that �u (y) = u (0) and use (a) to conclude that x − �i (x) = x <

y = y − l−1 (�u (y)) < x′ − l−1
(
�u

(
x′)) = x′ − �

(
x′).

(c) If �u (x) /∈ [u (0) , u (p)] and �u
(
x′) /∈ [u (0) , u (p)] then �i (x) = 0 and �i

(
x′) = 0

and obviously x − �i (x) = x < x′ = x′ − �i

(
x′).

3. Let x < p < x′. Now consider �(x′) (recall that �(x′) = l−1(u(x′)) if u(x′) ∈ [u(0), u(p)],
and �(x′) = 0 otherwise) and observe that �i (�(x′)) = �i

(
x′). If x < �(x′)�p then the

desired inequality follows from Case 2:

x − �i (x) < �(x′) − �i

(
�(x′)

)
< x′ − �i

(
x′) .

If �(x′)�x < p, then �i (x) ��i

(
�(x′)

) = �i

(
x′), and therefore

x − �i (x) < x′ − �i

(
x′) .

Hence, concavity implies MCD. �
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Proof of Lemma 8.
Step 1: We show that 0�x < y�1 implies that y−� (y) > x−� (x) and y−� (y) > x−� (x).
What follows proves the first implication; a similar argument proves the second. Note that for

any x, y, 0�x < y�1 the following observations hold:

(i) There is a subset of the players, Q ⊂ I , #Q�n − q + 1, such that �j (y) �� (y) for all
j ∈ Q. This follows directly from the definition of � (y).

(ii) MCD implies that y − �i (y) > x − �i (x) for all i ∈ I .

To establish the claimed inequality we proceed by contradiction. Assume that y − � (y) �x

− � (x). Then � (x) < �j (x) for all j ∈ Q, since otherwise, (i) implies that

y − �j (y) �y − � (y) �x − � (x) �x − �j (x) for some j ∈ Q,

which contradicts (ii). However, since #Q�n−q+1, � (x) must be an acceptable alternative when

the continuation outcome is x for least one player in Q. Therefore � (x) � min
{
�j (x) : j ∈ Q

}
,

which is also a contradiction.
Step 2: For any x, y, 0�x < y�1, we examine all possible values of the best response to x,

�i (x), to establish that y − �i (y) > x − �i (x):

(i) �i (x) = � (x). Using Step 1 and the definition of �i (·), y −�i (y) �y −� (y) > x −� (x) =
x − �i (x).

(ii) �i (x) = pi . If �i (y) = pi , the claim follows directly. Otherwise, either �i (y) = � (y)

or �i (y) = � (y). If �i (y) = � (y), then � (y) �pi �� (x) since pi ∈ [
� (x) , � (x)

]
.

Hence, y − �i (y) = y − � (y) �y − pi > x − pi = x − �i (x). If �i (y) = � (y),
using Step 1 and the fact that pi ∈ [

� (x) , � (x)
]

we get y − �i (y) = y − � (y) >

x − � (x) �x − pi = x − �i (x).
(iii) �i (x) = � (x). We distinguish three subcases: if �i (y) = � (y) the result follows di-

rectly from Step 1. The case �i (y) = pi can occur only if � (y) �pi �� (x) since pi ∈[
� (y) , � (y)

]
and pi �� (x). Therefore, y − �i (y) = y − pi > x − pi �x − � (x) =

x − �i (x). The last possibility is that �i (y) = � (y), which occurs when � (y) �pi �� (x).
Therefore, y − �i (y) = y − � (y) �y − pi > x − pi �x − � (x) = x − �i (x). �

Proof of Lemma 10. Let D = min
{∣∣pi − pj

∣∣ : i, j ∈ I , pi �= pj

}
. Take an ε < min {ε, D/2}

such that if z ∈ [pi − ε, pi + ε] then both �i (z) , �i (z) ∈ [pi − D/2, pi + D/2].
Recall observation R1, i.e. for all ���ε, �i (z) > �j (z) for all j ∈ Li and �i (z) < �h (z)

for all h ∈ Ri . To prove R2(1), we need to show that there exists � ∈ (0, 1), ���ε, such
that for all � > � if z ∈ [pi − ε, pi + ε] then �h (z) > �i (z) for all h ∈ Ri . Consider
an h ∈ Ri , and note that single-peakedness implies �h (z) �ph for all � ∈ (0, 1). There ex-
ists �̃ ∈ (0, 1) such that for all �� �̃, by definition �i (z) = �i

(
�i (z)

) = r−1
i

(
�ui

(
�i (z)

))
,

and r−1
i

(
ui

(
�i (z)

)) = �i (z) (note that �̃ can be selected to guarantee that �ui

(
�i (z)

) ∈
[ui (1) , ui (pi)] for all �� �̃, and thus r−1 is well defined). For z ∈ [pi − ε, pi + ε] fixed,
consider the difference r−1

i

(
�ui

(
�i (z)

)) − r−1
i

(
ui

(
�i (z)

))
for �� �̃. This difference is a con-

tinuous function of �, which has value zero at � = 1. Hence, there exists �� max
{
�ε, �̃

}
such that

r−1
i

(
�ui

(
�i (z)

)) − r−1
i

(
ui

(
�i (z)

)) = �i

(
�i (z)

) − �i (z) < ε for all � > �,
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and, since �i (z) < pi + D/2,

�i (z) = �i

(
�i (z)

)
< pi + D/2 + ε < pi + D�ph ��h (z) for all � > �.

R2(2) is proved analogously. �

Proof of Proposition 11. Some preliminary remarks are in order. By Lemma 10 we can select
ε, � ∈ (0, 1), ε < min {̂ε, D/2}, D = mini,j∈I

{∣∣pi − pj

∣∣ : pi �= pj

}
, such that R2 holds for all

i ∈ I q . On the other hand, by Lemma 20, ε and � can be selected so that, in addition to R2 for all
i ∈ I q , the following technical property (that follows by continuity and single-peakness) is also
assured for all i ∈ I :

SIGN : Either |�i (x) − �i (y)| �
∣∣�i (x) − �i (y)

∣∣ for all x, y ∈ [p − ε, p + ε], or the reverse
weak inequality holds throughout this interval.

Next we prove the proposition in four steps.

Step 1: There exist �1 ∈ (0, 1) such that, ∀� > �1, if x and y are SSPE with outcomes x < y then
there is some pi ∈ [

pn−q+1, pq
]

such that xj , yj ∈ [pi − ε, pi + ε] ∩ [0, 1] for all j ∈ I .

By Lemma 18, for ε/4 > 0, there is a �1 � �̂ε (where �̂ε < 1 is the � lower bound for ε̂-
regularity), such that if � > �1 and z is an SSPE, then zi ∈ (z − ε/4, z + ε/4) ∀i ∈ I . Fix
� > �1 and assume that x and y are SSPE with outcomes x < y. By Lemma 19, |x − y| <

ε/2 and (x − ε/4, y + ε/4) ∩ {p1, . . . , pn} = pi . Since pi ∈ (x − ε/4, y + ε/4) and zi ∈
(x − ε/4, y + ε/4) for z = x, y, it follows that:

zi − pi �y + ε/4 − [x − ε/4] = y − x + ε/2 < ε,

and

zi − pi �x − ε/4 − [y + ε/4] = − (y − x) − ε/2 > −ε/2 − ε/2 = −ε;

and therefore all proposals in x and y lie in [pi − ε, pi + ε] ∩ [0, 1].
We can rule out that pi ∈ [

0, pn−q+1
) ∪ (pq, 1

]
: Otherwise, there is a player j with pj ∈[

pn−q+1, pq
]

that proposes xj = yj = pj in both equilibria (since it is acceptable at both alleged
equilibrium continuations); this contradicts that x < y. Hence, pi ∈ [

pn−q+1, pq
]
.

Before we proceed to Step 2, note that for i ∈ I q the hypothesis that x and y are SSPE
with outcomes x, y ∈ [pi − ε̂, pi + ε̂], x < y, rules out that � (pi + ε̂) �pi �� (pi − ε̂), i.e.
condition (b) in the definition of ε̂-regularity. The reason is simple; under (b) the equilibrium
proposal of player i ought to be the same at both SSPE, contradicting that x < y. Hence, in
what follows, ε̂-regularity implies condition (a). Thus, given the peak identified in Step 1, either
0 < pn−q+1 �pi �pq < 1 which implies that i ∈ I q and R2 applies; or else, q = n and
pi = p1 = 0 or pi = pn = 1.

In Steps 2 and 3, we maintain the assumption that 0 < pn−q+1 �pi �pq < 1. In Step 4, we
take care of the cases where pi = pq = 0, or pi = pn − q + 1 = 1.

Step 2: Let pi ∈ (0, 1). There exist �2 ∈ (0, 1) such that, ∀���2, if x and y are SSPE with
outcomes x < y and xj , yj ∈ [pi − ε, pi + ε] for all j ∈ I , then pi /∈ (pn−q+1, pq).
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We will establish that the claim holds for �2 = max
{
�1, �

}
. Assume ���2, which implies R2,

and let pi ∈ (
pn−q+1, pq

)
. By R2, �h (z) > �i (z) and �h (z) > �j (z) for all z ∈ [pi − ε, pi + ε]

for all j ∈ Li and all h ∈ Ri . Moreover, pi < pq implies that #Ri �n − q + 1, so that, by
Lemma 21, � is a contraction in [pi − ε, pi + ε]. Similarly, we can argue that � is a contraction
in [pi − ε, pi + ε]. Applying Lemma 16 we conclude that the best responses of all players are
contractions in [pi − ε, pi + ε], implying that at most one equilibrium can be attained in this
interval, which is a contradiction.

Step 3: Let pi ∈ (0, 1) and ���2. If x and y are SSPE with outcomes x < y and xj , yj ∈
[pi − ε, pi + ε] for all j ∈ I , then neither pi = pn−q+1 nor pi = pq . We prove that pi �=
pn−q+1; the proof that pi �= pq is analogous.

Since �2 ��, we establish the claim for each of the two possible cases allowed by SIGN.
Case 1: |�i (x) − �i (y)| �

∣∣�i (x) − �i (y)
∣∣ for all x, y ∈ [pi − ε, pi + ε].

For this case, we can establish that � and � are contractions in
[
pn−q+1 − ε, pn−q+1 + ε

]
and

apply Lemma 16 to obtain a contradiction. Since pi = pn−q+1 < pq , the same argument of
Step 2 applies to see that � is a contraction. To complete the proof of the claim for this case, we
show that � is a contraction. Note that # (Li ∪ {i}) = n − q + 1, so that R2 implies that �i = �.
Hence it will suffice to prove that �i is a contraction in this interval. Assume w.l.o.g. �i (x) <

�i (y). Then, by MCD �i

(
�i (x)

) − �i (x) > �i

(
�i (y)

) − �i (y) and, by single-peakedness,
�i

(
�i (x)

)
��i

(
�i (y)

)
. Thus,∣∣�i

(
�i (y)

) − �i

(
�i (x)

)∣∣ <
∣∣�i (y) − �i (x)

∣∣ .
Note as well that, in the present case,

∣∣�i (y) − �i (x)
∣∣ � |y − x|. 12 Now, using∣∣�i

(
�i (y)

) − �i

(
�i (x)

)∣∣ = |�i (y) − �i (x)|
we conclude that |�i (y) − �i (x)| < |y − x|.

Case 2: |�i (x) − �i (y)| �
∣∣�i (x) − �i (y)

∣∣ ∀x, y ∈ [pi − ε, pi + ε].
Presently � may not be a contraction; so we need a direct contradiction to the hypothesis that two

different SSPE exist. Departing from this hypothesis, note that, at least in one of the two alleged
SSPE, say in x, the proposal of agent i must be different from her peak, xi �= pi = pn−q+1. Thus,
x is such that xh = � (xh+1) for h ∈ Ri , xj = �

(
xj+1

)
for j ∈ Li , and either xi = � (xi+1) or

xi = � (xi+1). Assume, w.l.o.g., the first possibility, xi = � (xi+1). There exist aj �0 and bh �0
such that

xj = �
(
xj+1

) = xj+1 − aj for j ∈ Li ∪ {i} and xh = � (xh+1) = xh+1 + bh for h ∈ Ri.

Also, note that for any z, w ∈ [pi − ε, pi + ε] there is an h ∈ Ri such that � (z) = �h (z) and by
ε̂-regularity and MCD

z − �h (z)� (pi + ε) − �h (pi + ε) < (pi + ε̂) − �h (pi + ε̂)

< (pi − ε̂) − �i (pi − ε̂) < (pi − ε) − �i (pi − ε) �w − �i (w) ,

12 To check this, consider all possible cases: (i) x = �i (x), y = �i (y), (ii) x = �i (x), y = �i (y), (iii) x = �i (x),
y = �i (y) and (iv) x = �i (x), y = �i (y), and use |�i (x) − �i (y)| �

∣∣�i (x) − �i (y)
∣∣, �i (x) < �i (y) and (by

single-peakedness) �i (x) ��i (y).
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so that

z − � (z) < w − �i (w) for all z, w ∈ [pi − ε, pi + ε] . (1)

Next, observe that if z, � (z) ∈ [pi − ε, pi + ε] then � (z) , �i (z) ∈ [pi − ε, pi + ε]. Recall that
since # (Li ∪ {i}) = n−q+1, R2 assures that � (z) = �i (z) and by definition �i (pi) = �i (pi) =
pi . To check that � (z) ∈ [pi − ε, pi + ε], note that |�i (x) − �i (y)| �

∣∣�i (x) − �i (y)
∣∣ implies

that ∣∣pi − �i (z)
∣∣ = |pi − �i (�i (z))| �

∣∣pi − �i (�i (z))
∣∣ = |pi − �i (z)| = |pi − � (z)| < ε.

Since � (z) � min
{
�h (z) : h ∈ Ri

}
, R2 implies z − � (z) < z − �i (z), so that pi − � (z) <

pi − �i (z). Therefore, � (z) ∈ [pi − ε, pi + ε] when pi − � (z) �0; and since pi − � (z) <

0 implies that � (z) ∈ (pi, z), then � (z) ∈ [pi − ε, pi + ε] as well. To see that �i (z) ∈
[pi − ε, pi + ε] just note that |pi − �i (z)| �

∣∣pi − �i (z)
∣∣ � |pi − �i (z)| = |pi − � (z)| �ε.

Consider equilibrium proposals xj+1, xh+1 ∈ [pi − ε, pi + ε] such that for j ∈ Li ∪ {i} and
h ∈ Ri , xj = �

(
xj+1

)
and xh = � (xh+1) ∈ [pi − ε, pi + ε]. By the previous observation

� (xh+1) , �i (xh+1) ∈ [pi − ε, pi + ε] as well. Using (1), yields

xj+1 − �
(
xj+1

)
< �i (xh+1) − �i (�i (xh+1)) = �i (xh+1) − �i

(
�i (xh+1)

)
�

∣∣�i (xh+1) − �i

(
�i (xh+1)

)∣∣ = �i

(
�i (xh+1)

) − �i (xh+1)

= �i (xh+1) − �i (xh+1) ��i (xh+1) − xh+1 = � (xh+1) − xh+1.

Hence, for any j ∈ Li ∪ {i} and any h ∈ Ri , aj = xj+1 − �
(
xj+1

)
< � (xh+1) − xh+1 = bh.

Since q > n/2 implies that #Ri �# (Li ∪ {i}), we conclude that∑
j∈Li∪{i}

aj =
∑

j∈Li∪{i}

(
xj+1 − �

(
xj+1

))
<

∑
h∈Ri

(� (xh+1) − xh+1) =
∑
h∈Ri

bh.

But this contradicts the hypothesis that x is an SSPE, since, by definition at an SSPE∑
j∈Li∪{i}

aj =
∑
h∈Ri

bh.

Under the assumption that xi = � (xi+1) the symmetric argument applies, taking into account
that # (Ri ∪ {i}) �#Li .

Step 4: There exists �3 ∈ [�2, 1) such that ∀���3, it is impossible to sustain two SSPE x and y
with outcomes x < y, and xj , yj ∈ [0, ε] for all j ∈ I . And similarly for xj , yj ∈ [1 − ε, 1].

Assume that the peak identified in Step 1 is pi = p1 = 0. Then q = n, Li = ∅, and
0 = �i (z) ��h (z) for all h ∈ Ri . Since #Ri �n − q + 1, by Lemma 21, � is a contraction
in [0, ε].

Moreover, there exists �3 ∈ [�2, 1) such that for all � > �3 if z ∈ [0, ε] with ε < D/2 then
�h (z) ��i (z) for all h ∈ Ri . To see this, take h ∈ Ri , and note that single-peakedness implies
�h (z) �ph for all � ∈ (0, 1). There exists �̃ ∈ (0, 1) (that guarantees that r−1

i (�ui (z)) is well
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defined for all �� �̃), such that for all �� �̃, by definition

�i (z) = r−1
i (�ui (z)) ,

r−1
i (ui (z)) = z.

For z ∈ [0, ε] fixed and �� �̃, consider the difference r−1
i (�ui (z))−r−1

i (ui (z)) as a the function

of �; this function is continuous and has value zero at � = 1. Hence, there exists �3 � max
{
�2, �̃

}
such that

r−1
i (�ui (z)) − r−1

i (ui (z)) = �i (z) − z < ε for all � > �3.

And, since z�ε and ε < D/2,

�i (z) �2ε < D�ph ��h (z) for all � > �3 and all h ∈ Ri.

Therefore, since # {i} �n − q + 1, by Lemma 21, � is a contraction in [0, ε]. Thus, for � > �3,
by Lemma 16, the best responses are contractions in [0, ε], so that this interval admits at most
one SSPE outcome.

A similar argument covers the case pi = pn = 1.
Taking �̂ = �3, Steps 1– 4 imply that for �� �̂ there is a unique SSPE. �

Lemma 14. Assume that the utility of player i satisfies MCD and symmetry, i.e., ui (x) =
fi(|x − pi |). Then �i and �i are contractions; that is for all x, y ∈ [0, 1] with x �= y,∣∣�i (x) − �i (y)

∣∣ < |x − y| and |�i (x) − �i (y)| < |x − y| .

Proof. We prove that
∣∣�i (x) − �i (y)

∣∣ < |x − y|. A similar argument establishes that
|�i (x) − �i (y)| < |x − y|.

Depending on the position of x and y relative to pi we distinguish three cases: (i) If x <

y�pi , then y − �i (y) > x − �i (x) �0 follows from MCD. Moreover, single-peakedness im-
plies �i (y) ��i (x). Therefore,

∣∣�i (y) − �i (x)
∣∣ < |y − x|. (ii) If x < pi < y, by symmetry

|x − �i (y)| < |x − y|. Moreover, by definition �i (y) = �i (�i (y)) and by (i),
∣∣�i (x) − �i (�i (y))

∣∣
< |x − �i (y)| (note that �i (y) = �i (�i (y)) holds even though ui(y) > ui(�i (y))). Hence,

∣∣�i (x)

−�i (y)
∣∣ = ∣∣�i (x) − �i (�i (y))

∣∣ < |x − �i (y)| < |x − y|. (iii) If pi �x < y, consider �i (y) and
�i (x) and notice that symmetry implies that |�i (x) − �i (y)| � |x − y|, (possibly with strict in-
equality when �i (y) = 0); then using (i), �i (x) = �i (�i (x)) , and �i (y) = �i (�i (y)) we obtain∣∣�i (x) − �i (y)

∣∣ = ∣∣�i (�i (x)) − �i (�i (y))
∣∣ < |�i (x) − �i (y)| � |x − y|. �

Lemma 15. If �i is a contraction for all i ∈ I , then � is a contraction; and similarly for �i

and �.

Proof. Consider any x, y ∈ [0, 1] and assume w.l.o.g. x < y. Since the functions �i are con-
tinuous for all players, there is a finite collection of alternatives zk ∈ [x, y], x = z0 < z1 <

· · · < zK+1 = y, at which the pivotal player(s) determining � change(s). That is, there exists
h : {0, 1, . . . , K} → I , such that �(zk) = �h(k−1)(zk) = �h(k)(zk), and for ε > 0 and sufficiently
small, �(zk − ε) = �h(k−1)(zk − ε) and �(zk + ε) = �h(k)(zk + ε), where h(k − 1) and h(k)

denote the player(s) that stop and begin being pivotal at zk (as we move from x to y). That is, the
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function � restricted to the interval [x, y] is given by

� (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�h(0) (z) if x = z0 �z�z1,

�h(1) (z) if z1 �z�z2,

�h(2) (z) if z2 �z�z3,

......... ...................

�h(K) (z) if zK �z�zK+1 = y,

where K is a finite integer and h(k) ∈ I for all k ∈ {0, . . . , K}.
For simplicity, write h(0) = i and h(K) = j . Now,∣∣� (y) − � (x)

∣∣ =
∣∣∣�j (y) − �j (zK) + �j (zK) − �i (x)

∣∣∣
=

∣∣∣�j (y) − �j (zK) + �h(K−1) (zK) − �i (x)

∣∣∣
�

∣∣∣�j (y) − �j (zK)

∣∣∣ + ∣∣�h(K−1) (zK) − �i (x)
∣∣ .

Iterating the triangle inequality and using Lemma 14,
∣∣�k (z) − �k

(
z′)∣∣ <

∣∣z − z′∣∣ for any z, z′ ∈
[0, 1] and any k ∈ I , we obtain

∣∣� (y) − � (x)
∣∣� ∣∣∣�j (y) − �j (zK)

∣∣∣ +
K−1∑
k=1

∣∣�h(k) (zk+1) − �h(k) (zk)
∣∣ + ∣∣�i (z1) − �i (x)

∣∣
< |y − zK | +

K−1∑
k=1

|zk+1 − zk| + |z1 − x| = |y − x| .

A similar argument proves that � is a contraction whenever �i is a contraction for all i ∈ I . �

Lemma 16. If � and � are contractions in an interval [a, b] ⊂ [0, 1], then �i is also a contraction
in [a, b] for all i ∈ I .

Proof. Recall that for all i ∈ I �i (x) ∈ [� (x) , � (x)] and that �i (x) ∈ (� (x), � (x)) implies
�i (x) = pi . Consider any x, y ∈ [a, b] , x �= y, and assume w.l.o.g. that � (x) ��(y).13

Next, consider in turn each possible scenario.

1. [�(x), �(x)] ∩[� (y) , � (y)] = [c, d] �= ∅, where c = � (y) and d = min {� (x) , �(y)}.
(a) If pi ∈ [c, d] then �i (x) = �i (y) = pi .
(b) If pi < � (x) then �i (x) = � (x) and �i (y) = � (y).
(c) If � (x) �pi < a, then �i (x) = pi and �i (y) = � (y). In this case, 0 < �i (y)−�i (x) =

� (y) − pi < � (y) − �(x).
(d) If d < pi � max {� (x) , �(y)} then either �i (x) = pi and �i (y) = � (y) when � (x) =

max {� (x) , �(y)} or �i (x) = � (x) and �i (y) = pi . In the first case, 0 < �i (x)−�i (y) =
pi − � (y) < � (x) − �(y). In the second case, 0 < �i (y) − �i (x) = pi − � (x) <

� (y) − � (x).
(e) If pi > max {� (x) , �(y)} then �i (x) = � (x) and �i (y) = �(y).

13 Note that we can have either � (x) �� (y) or � (x) > � (y).
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2. [�(x), �(x)] ∩[�(y), �(y)] = ∅.
(a) If pi < � (x) then �i (x) = � (x) and �i (y) = � (y).
(b) If � (x) �pi ��(x) then �i (x) = pi and �i (y) = � (y). In this case, 0 < �i (y)−�i (x) =

� (y) − pi �� (y) − �(x).
(c) If �(x) < pi < �(y) then �i (x) = �(x), �i (y) = �(y). Since �(x) < �(x) < �(y),

0 < �i (y) − �i (x) = �(y) − �(x) < �(y) − �(x).
(d) If �(y)�pi ��(y) then �i (x) = � (x) and �i (y) = pi . Now, 0 < �i (y) − �i (x) =

pi − �(x) < �(y) − �(x).
(e) If pi > �(y) then �i (x) = � (x) and �i (y) = �(y).

In case 1(a) it is immediate that
∣∣�i (y) − �i (x)

∣∣ < |y − x|. For the remaining scenarios, if �
and � are contractions, then the inequality follows. Hence, if � and � are contractions then �i (·)
is a contraction for all i ∈ I . �

Lemma 17. For each player i ∈ I and any ε > 0, there exists � > 0 and �ε ∈ (0, 1) such that
for � > �ε

if x ∈
[
pn−q+1 − �, pq + �

]
∩ [0, 1] then

∣∣�i (x) − x
∣∣ < ε.

Proof. Denote by L = {
i ∈ I : pi �pn−q+1

}
and by R = {i ∈ I : pi �pq}, and note the fol-

lowing two facts:

(a) Every best response proposal �i (x) must be acceptable at least to a player j ∈ L, and to a
player k ∈ R. i.e., � (x) � min

{
�k (x) : k ∈ R

}
and �(x)� max

{
�j (x) : j ∈ L

}
.

(b) (i) If x�pi then for each ε > 0 there is a �iε ∈ (0, 1) such that x − �i (x) < ε for all
���iε; and symmetrically (ii) if x�pi then for each ε > 0 there is a �iε ∈ (0, 1) such that
�i (x) − x < ε for all ���iε.(This claim is immediate from the definitions of �i and �i and
the continuity of ui .)

Recall that �i (x) ∈ [
�(x), �(x)

]
. Hence it suffices to show that for all ε > 0 there exist � > 0

and �ε ∈ (0, 1) such that, for x ∈ [
pn−q+1 − �, pq + �

] ∩ [0, 1] and ���ε, x − �(x) < ε and
�(x) − x < ε. We establish this claim next.

Case 1: Consider pn−q+1 �x�pq . By (a), �i (x) must be approved by some j ∈ L and some
k ∈ R. By (b)(i) for any ε > 0 and for any k ∈ R there is a �kε ∈ (0, 1) such that x − �k(x) < ε

for all ���kε. Taking �R = max {�kε : k ∈ R}, since � (x) � min
{
�k (x) : k ∈ R

}
, it follows

that x − �(x) < ε for all ���R . Similarly, by (b)(ii) we conclude that there exists �L such that
�(x) − x < ε for ���L. Thus, for each ε > 0, the claim follows for ���ε = max {�L, �R}.

Case 2: Consider x < pn−q+1. Again, by (a) �i (x) must be approved by some k ∈ R. Using
(b)(i) it is immediate that for any ε > 0 and for any k ∈ R, there is a �kε ∈ (0, 1) such that
x − �k(x) < ε for all ���kε; taking �R = max {�kε : k ∈ R} it follows that 0 < x − �(x) < ε

for all ���R .
Now consider �. For any ε > 0, we can choose �1 > 0 arbitrarily such that (by continuity)

if x ∈ [
pn−q+1−�1, p

n−q+1
] ∩ [0, 1] then there exist 	�0 and ε′>0 satisfying ε′+	<ε and

�i (x) −x�	 for players i ∈ I with pi=pn−q+1. Moreover, for players with pj<pn−q+1 if x ∈[
pn−q+1−�2, p

n−q+1
]∩[0, 1], where �2 = min

{
pn−q+1−pj : pj < pn−q+1

}
, then �j (x) = x.

Choose �� min
{
�1,�2

}
and consider x ∈ [

pn−q+1 − �, pn−q+1
] ∩ [0, 1]. Since �j (x) �pj

for all j ∈ L, using (b)(ii), we know that there exists �jε′ ∈ (0, 1) such that �j (�j (x))

− �j (x) < ε′ when ���jε′ . Then, choosing �L = max
{
�jε′ : j ∈ L

}
and noting that by
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definition �j (�j (x)) = �j (x), it follows that for any j ∈ L,

0 < �j (x) − x = (
�j (x) − x

) + (
�j (x) − �j (x)

)
�	 + ε′ < ε when ���L,

where we have used �i (x) − x�	 for all i with pi = pn−q+1 and �j (x) − x = 0 for all j with
pj < pn−q+1.

Therefore, since by (a) �(x)� max
{
�j (x) : j ∈ L

}
, we have that for x ∈ [

pn−q+1 − �,

pn−q+1
] ∩ [0, 1] then �(x) − x < ε for all ���L.

Hence for every ε > 0, if �� min
{
�1, �2

}
, ���ε = max {�L, �R}, and x ∈ [

pn−q+1 − �,

pn−q+1
] ∩ [0, 1] then x − �(x) < ε and �(x) − x < ε.

Case 3: The case x > pq is analogous to Case 2.
Thus the claim is established and the proof is complete. �

Lemma 18. Assume q > n/2. For each ε > 0 there is �ε ∈ (0, 1) such that if ���ε and
x = (x1, . . . xi, . . . xn) is an SSPE, then |xi − x1| < ε for all i ∈ I .

Proof. Fix an SSPE, x = (x1, . . . xi, . . . xn), and keep in mind that xj = �j

(
xj+1

)
.

Step 1: For all j ∈ I and all �j > 0 there exists �j�j
∈ (0, 1) such that if ���j�j

then

xj ∈ [
pn−q+1 − �j , p

q + �j

] ∩ [0, 1].
Note that q > n/2 implies the existence of a player i with pi ∈ [

pn−q+1, pq
]
, and that for such

player the best response �i (xi+1) lies in
[
pn−q+1, pq

]
regardless of the value of xi+1. Hence,

we may assume the following induction hypothesis: For player i, for any �i > 0 there exists
�i�i

∈ (0, 1) such that if ���i�i
then xi ∈ [

pn−q+1 − �i , p
q + �i

] ∩ [0, 1]. Next we show that
the induction hypothesis implies in turn that for any �i−1 > 0 there exists �i−1�i−1

∈ (0, 1) such
that if ���i−1�i−1

then xi−1 ∈ [
pn−q+1 − �i−1, p

q + �i−1
] ∩ [0, 1].

Under the Induction hypothesis (that guarantees that, for any �i > 0, xi ∈ [
pn−q+1 − �i , p

q

+�i

]∩[0, 1] provided that ���i�i
), by Lemma 17, for any εi > 0 there exists �iεi

��i�i
such that

if ���iεi
, then

∣∣�i−1 (xi) − xi

∣∣ < εi . Hence, we can conclude that for any �i−1 > 0 there exists
�i−1�i−1

∈ (0, 1) such that if ���i−1�i−1
, then xi−1 ∈ [

pn−q+1 − �i−1, p
q + �i−1

] ∩ [0, 1] (just
select εi and �i such that εi + �i ��i−1 and �i−1�i−1

��iεi
.

Step 2: For all i ∈ I and all εi > 0, there exists 0 < �i<1 such that if ���i then |xi−1−xi | <εi .
By Lemma 17, for all εi > 0, there exists �i > 0 and �εi

∈ (0, 1) such that (when ���εi
) xi ∈[

pn−q+1 − �i , p
q + �i

]∩[0, 1] implies that |xi−1 − xi | < εi . Moreover, by the previous step, for
any �i > 0 there exists �i�i

∈ (0, 1) such that if ���i�i
, xi ∈ [

pn−q+1 − �i , p
q + �i

] ∩ [0, 1].
Hence, selecting �i = max

{
�εi

, �i�i

}
the claim follows.

Step 3: To complete the proof, we check that for each ε we can select a �ε such that if ���ε

then
∣∣x1 − xj

∣∣ < ε for all j ∈ I .
Simply choose εi = ε/n and �ε = max {�i : i ∈ I } such that |xi − xi+1| < εi when ���i .

Then

∣∣xj − x1
∣∣ =

∣∣∣∣∣∣xj −
n−1∑

i=j+1

xi +
n−1∑

i=j+1

xi + xn − xn − x1

∣∣∣∣∣∣
�

n−1∑
i=j

|xi − xi+1| + |xn − x1|�
n∑

i=j

εi < ε. �
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Lemma 19. Consider a game with q > n/2, and such that if z is an SSPE then zi ∈ (z − ε/2,

z + ε/2) for all i ∈ I , where ε ∈ (0, D/2) and D = mini,j∈I

{∣∣pi − pj

∣∣ : pi �= pj

}
. If x and

y are two SSPE with x < y, then |x − y| < ε and (x − ε/2, y + ε/2) ∩ {p1, . . . , pn} = pi for
some i ∈ I .

Proof.
Step 1: We rule out |x − y| �ε.
By assumption the proposals that arise in x and y lie, respectively, in (x − ε/2, x + ε/2) and

(y − ε/2, y + ε/2). If |x − y| �ε then (x − ε/2, x + ε/2) ∩ (y − ε/2, y + ε/2) = ∅, implying
that xi < yi for all i ∈ I . By Lemma 8, this implies that xi − xi−1 = xi − �i−1 (xi) <

yi − �i−1 (yi) = yi − yi−1 for all i ∈ I , and Lemma 9 implies a contradiction.
Step 2: |x − y| < ε and (x − ε/2, y + ε/2) ∩ {p1, . . . , pn} = pi .
Assume that there are two equilibria, x and y, with outcomes x < y, and proposals lying

on an interval with no peaks, say xi, yi ∈ (
pk, pk+1

)
for all i ∈ I . Then it is necessarily

the case that (pk, pk+1) ⊂ [pn−q+1, pq ]; otherwise, for player j with pj ∈ [
pn−q+1, pq

]
the

equilibrium proposal must be �j

(
xj+1

) ∈ [
pn−q+1, pq

] �⊂ (pk, pk+1). If all proposals in both
equilibria lie in (pk, pk+1) ⊂ [pn−q+1, pq ], for all i ∈ I , if xi = � (xi+1) then yi = � (yi+1),
and similarly if xi = � (xi+1) then yi = � (yi+1). Hence, for z = x, y, if player i proposes
zi = � (zi+1) then � (zi+1) = �R,q−k (zi+1) where R = {

i ∈ I : pi �pk+1
}

and if j proposes
zj = �

(
zj+1

)
then �

(
zj+1

) = �L,q−(n−k)
(
zj+1

)
where L = {

i ∈ I : pi �pk
}
. By single-

peakedness, xi+1 < yi+1 implies �k (xi+1) ��k (yi+1) for all k ∈ R and �k (xi+1) ��k (yi+1)

for all k ∈ L, so that � (xi+1) �� (yi+1) and �
(
xj+1

)
��

(
yj+1

)
, where i and j denote players

proposing zi = � (zi+1) and zj = �
(
zj+1

)
, respectively, for z = x, y. Hence, if xi+1 < yi+1

then �i (xi+1) = xi < yi = �i (yi+1). Since x1 = x < y = y1, then xi < yi for all i ∈ I .
Therefore, by Lemma 8, xi+1 − xi < yi+1 − yi for any i ∈ I ; and by Lemma 9 we derive a
contradiction.

Hence |x − y| < ε and (x − ε/2, y + ε/2) ∩ {p1, . . . , pn} �= ∅. Moreover, since ε < D/2,
(x − ε/2, y + ε/2) ∩ {p1, . . . , pn} must be singleton, so that the result follows. �

Lemma 20. For every profile of continuous and single-peaked utility functions there exist ε ∈
(0, 1), such that the following holds for all i ∈ I :

SIGN : Either |�i (x) − �i (y)| �
∣∣�i (x) − �i (y)

∣∣ for all x, y ∈ [p − ε, p + ε], or the reverse
weak inequality holds throughout this interval.

Proof. Consider any player with peak pi = p and utility ui = u. The claim is obvious when p ∈
{0, 1}, since either � (x) = � (y) = 0 or � (x) = � (y) = 1 for all x, y ∈ [p − ε, p + ε] ∩ [0, 1],
for any ε > 0.

Assume p∈ (0, 1), let u= max {u(0), u(1)} <u (p) and consider l−1 : [
u, u (p)

] → [0, 1]
and r−1 : [

u, u (p)
] → [0, 1]. These functions are increasing and decreasing respectively, contin-

uous and (by definition) l−1 (u (p)) = r−1 (u (p)) = p. Define function f : [
u, u (p)

] → [0, 1]
as f (u) = [

r−1 (u) − p
] − [

p − l−1 (u)
]
. Since f is continuous and f (u (p)) = 0, there exists

u ∈ [
u, u (p)

]
such that for all u ∈ [u, u (p)] either (i) f is non-increasing and f (u) �0, or (ii) f

is non-decreasing and f (u) �0.
Take an ε > 0 such that for all z ∈ [p − ε, p + ε], both u (� (z)) �u and u (� (z)) �u. We

will show next that either |� (x) − � (y)| � |� (x) − � (y)| for all x, y ∈ [p − ε, p + ε], or the
reverse weak inequality holds throughout this interval.
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Assume (i), consider any x, y ∈ [p − ε, p + ε], and assume w.l.o.g. that � (x) < � (y), which
implies (by single-peakedness) � (x) > � (y) (note that � (x) = � (y) implies � (x) = � (y)

and either weak inequality holds trivially). Since u (� (x)) > u (� (y)), by (i) we have that
f (u (� (x))) − f (u (� (y))) �0; that is

r−1 (u (� (x))) + l−1 (u (� (x))) − r−1 (u (� (y))) − l−1 (u (� (y))) �0

Since by definition, r−1 (u (� (z))) = � (z) and l−1 (u (� (z))) = � (z) for z = x, y, we get
� (x) + � (x) − � (y) − � (y) �0, or equivalently,

� (x) − � (y) �� (y) − � (x) .

Therefore, since � (x) < � (y) and � (x) > � (y), we conclude that

|� (x) − � (y)| � |� (x) − � (y)| for all x, y ∈ [p − ε, p + ε] .

Similar arguments apply to case (ii). Then f non-decreasing and f (z) �0 for all z ∈ [u, u (p)],
implies that |� (x) − � (y)| � |� (x) − � (y)| for all x, y ∈ [p − ε, p + ε]. �

Lemma 21. Consider a profile of MCD utilities. Let [a, b] ⊂ [0, 1] and Q ⊂ I , #Q�n− q + 1:

(i) If pj �b for all j ∈ Q and �j (z) ��k (z) for all z ∈ [a, b] and all k ∈ I\Q, then � is a
contraction in [a, b].

(ii) If pj �a for all j ∈ Q and �j (z) ��k (z) for all z ∈ [a, b] and all k ∈ I\Q, then � is a
contraction in [a, b].

Proof. We prove statement (i), the proof of (ii) is analogous. Let s = q − # (I\Q). Since � (z) =
�I,q (x) and, for any j ∈ Q, �j (z) ��k (z) for all k ∈ I\Q, then � (z) = �Q,s (x). Consider
z, z′ ∈ [a, b], z < z′. Since #Q�n − q + 1, there are at least n − q + 1 players j ∈ Q such that
�j

(
z′) ��

(
z′). Since � (z) must be acceptable at least to one of those players, say h ∈ Q, it must be

that �h (z) �� (z). Thus, MCD implies z−� (z) �z−�h (z) < z′−�h

(
z′) �z′−�

(
z′). Moreover,

single-peakedness assures that �j (z) ��j

(
z′) for all j ∈ Q and therefore, since � (x) = �Q,s (x),

it must be that � (z) ��
(
z′). Thus,

∣∣� (
z′) − � (z)

∣∣ <
∣∣z′ − z

∣∣ for all z, z′ ∈ [a, b]. �
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